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Transition to space-time chaos in an optical loop with translational transport

L. Pastur, U. Bortolozzo, and P. L. Ramazza
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~Received 30 July 2003; published 28 January 2004!

We describe the transition from regular patterns to space-time chaos in an optical system with nonlocal
feedback. The nonlocality introduced breaks the rotational symmetry of the system, resulting in a scenario for
the transition from regular patterns to a disordered dynamics. The different regimes are characterized both in
terms of spatial and temporal correlation functions, and by means of a Kahrunen-Loeve decomposition. This
allows the determination of the structures participating in the dynamics, and an estimation of the active degrees
of freedom versus the control parameter.
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I. INTRODUCTION

In the context of the research about disordered dynam
states in extended systems@1#, several nonlinear optical sys
tems have recently attracted attention@2–5#. In particular,
nonlinear media or devices inserted in optical loops@6,7#
offer a powerful framework for the study of pattern form
tion, both in ordered and in disordered dynamical regime

Among such devices, liquid crystal light valves~LCLV’s !
have become popular because of their large nonlinearity
slow time scale, which allow the study of large aspect ra
space-time dependent signals.

Indeed, optical valves act over a wide range of opti
intensities as Kerr-like media, transforming input intens
distributions u(r ,t) into output phase modulationsw(r ,t)
proportional tou. In a diffractive feedback configuration
phase modulations transform by free propagation into am
tude distributions, producing at the rear side of the valve
intensity pattern that will in turn generate phase modulatio
hence closing the feedback loop. Such a nonlinear opt
system can therefore enhance spatiotemporal perturbat
and lead to pattern formation, beyond some critical valueI c

of the input light intensity.
If nonlocal interactions are introduced by means of

translationDx in the feedback beam, a particularly rich sc
nario of instabilities is observed; in particular, transitio
from hexagons to stripes, and then to bimodal states, n
equilateral hexagons or zig-zag patterns can occur@8#. These
situations have been characterized close to threshold;
transition from regular patterns to space-time chaos, on
other side, has been so far studied only in the caseDx50
@9–11#.

In this paper, we are interested in the scenario of tra
tion toward space-time chaos in an optical loop of this k
for a nonzero value ofDx. The control parameter is the ligh
intensityI at the input of the LCLV, and the spatial offsetDx
is set at a value such that stripes are selected at thres
When the pump parameter is increased, the initially comp
order of the structures is first broken by the appearanc
local bursts of activity, which can give rise to dislocation
These appears at random positions in the system and d
mine an anisotropic behavior of the spatial correlation fu
tion at intermediate pump values. In this ‘‘weakly chaoti
situation, the signal displays a limited amount of irregu
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fluctuations upon an otherwise regular stripe pattern, wh
contains most of the energy.

The number of active areas and defects increases w
increasing the control parameter, and ultimately all sig
tures of regularity are lost in the signal. In the fully deve
oped chaotic regime, the isotropy of the spatial correlat
function is, at least partially, recovered. Furthermore, we w
see how the signal manifests a fully multimode nature, c
trary to what happens at lower pump values.

In Sec. II we briefly describe our experimental setup, co
sisting of an optical feedback loop closed trough a LCL
Section III is devoted to a qualitative description of the rou
from regular patterns to space-time chaos~STC! observed. In
Sec. IV we give a quantitative characterization of the abo
transition, in terms of spatial and temporal correlation fun
tions. Section V is dedicated to an analysis of the signals
terms of the Kahrunen-Loeve decomposition. This techniq
allows an identification of the modes participating to the d
namics, and a quantitative evaluation of the number of ac
degrees of freedom.

II. EXPERIMENTAL FEATURES

The experimental setup is shown in Fig. 1. A liquid crys
light valve is illuminated by an expanded spatially unifor

FIG. 1. Experimental setup. An extended laser beam is clo
through a nonlinear Kerr-like medium~liquid crystal optical valve!.
Instabilities develop in the transverse plane of the beam. O: mi
scope objective; A1 , A2: apertures; BS1 , BS2: beam splitters;
LCLV: liquid crystal light valve; L1 , L2: lenses of focal lensf; FB:
fiber bundle, twisted of 180° in order to compensate the ima
spatial inversion introduced by the lenses.
©2004 The American Physical Society10-1
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laser beam generated by an Ar1 laser at 514 nm. The valve
operates like a defocusing medium working in reflectio
Over a broad range of parameters, a proportionality rela
holds between the intensity of the writing light, that reach
the back of the valve, and the phase retardation induced
the reading beam on the front valve face. We will oper
within this range, referred to as ‘‘Kerr-like regime,’’ in th
experiments here reported.

Two lensesL1 and L2 realize a one-to-one image of th
LCLV front side in a plane that can be placed before or a
the input of a fiber bundle. This one relays the image from
input planeP to the back face of the LCLV. The suppl
voltage applied to the LCLV isV58.5 V, the frequencyn
52 kHz.

The control parameter is the input light intensityI
[uE0u2; in the following, we make use of the reduced co
trol parameter, defined ase5I /I c21, whereI c is the thresh-
old intensity for pattern formation.

Beam splitter BS2 deviates a part of the beam onto
charge-coupled device camera. Time series ofT5200 snap-
shotsu(r ,t) of the beam transverse section in a plane con
gated toP2 are acquired, and stored as 8-bits 2563256 pix-
els pictures. The variablex will denote the coordinate in the
direction of the translationD l , y the coordinate perpendicu
lar to it. The sampling time depends onI, decreasing from
200 ms atI;I c to 40 ms in space-time chaos. This depe
dence follows the natural scale of the dynamics, as will
seen in Sec. IV.

The spatial frequencies at which the system destabili
are those for which the phase distribution is most efficien
converted to intensity distribution, due to the propagat
over the effective diffractive lengthL5( l 11 l 2)22 f (L5
280 mm in the experiment here reported!. The values of
these frequencies areqn.Ak0p(2n11)/L, with n even.
How many of these scales are actually excited, will depe
on both the input intensity, and the diffusion length of t
LCLV. In our case, this length is of the order of 40mm.

Furthermore, any of these frequencies can generate
monics, due to the nonlinearity which inherently relates
electric field to its phase. Given, e.g., a phase distributio
a single spatial frequencyk0, and having an amplitudeg, the
corresponding electric field is

E0eig sin(k0x)5E0(
n

Jn~g!eink0x, ~1!

which in principle contains all the harmonics ofk0. In prac-
tical cases, only the harmonics up to a certain maxim
order will contain a relevant amount of energy. The num
of these excited frequencies increases for increasingg.

Due to these mechanisms of frequency destabilization
generation it is possible, in this system to obtain very bro
band, ‘‘turbulentlike’’ signals.

III. TRANSITION TO SPACE-TIME CHAOS

When the feedback is local, i.e., when no translation
applied to the pattern before feeding it back to the va
(Dx50), the selected pattern at the onsetI c of the instability
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consists of stationary hexagons. WhenDx is increased, hexa
gons lose stability to the benefit of stripes that are paralle
x. Increasing furtherD l up to .220 mm, a transition from
stripes to a bimodal pattern~horizontal1vertical stripes! oc-
cur @8#.

We study the transition from regular stripes to space-ti
chaos keeping fixedDx5180 mm, and increasingI. The pat-
tern formation threshold is atI c510 mW/cm2. Slightly
above this value, a set of stripes of the kind shown in F
2~a! forms. Figure 2~d! represents the far field distribution o
Fig. 2~a!, corresponding to its Fourier spectrum. It can
seen that the pattern is essentially at a single scale, wi
very small amount of second harmonic. This scale, co
sponding to the first unstable bandq1, is L.285 mm.

Figure 3~a! displays the time evolution of the central lin
of Fig. 2~a!. Clearly, the pattern is stationary, and hence fu
correlated in space and time. At higher pump intensities,
symmetry of these stripes is first broken by the appearanc
a varicose mode, ate.2. The features of this instability
depend onDx, and we are not discussing this point in det
here.

The varicose pattern, initially stationary, becomes tim
dependent ate.3. A snapshot of such kind of structure

FIG. 2. Patterns observed for increasinge: ~a! stripes (e
50.6); ~b! varicose state with defects (e53.1); ~c! developed
space-time chaos (e56.1). Upper raw: near field intensity distribu
tions; lower row: Far field intensities.

FIG. 3. Space-time diagrams fore50.6 ~a!, 3.1 ~b!, 6.1 ~c!. The
duration of the time series is 20, 12, and 5 sec in~a!, ~b!, and~c!,
respectively.
0-2
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TRANSITION TO SPACE-TIME CHAOS IN AN . . . PHYSICAL REVIEW E69, 016210 ~2004!
shown in Fig. 2~b!, and its power spectrum in Fig. 2~e!. In
these conditions, localized areas in the pattern become
porally active. In some cases the activity is limited to a ph
fluctuation that remains localized on a single stripe: in o
ers, defects are created in the form of dislocations, wh
then propagate in the direction ofDx ~towards the right in
our figures!. The time evolution of a line oriented alongy in
this regime is visible in Fig. 3~b!.

The number of these active areas and their occurre
frequency increases for increasinge, until, at e.5, a fully
space-time chaotic state is reached. In this regime, the ins
taneous pattern still displays a visible residual of strip
symmetry@Fig. 2~c!#. However, the spectral broadening o
served in Fig. 2~f! indicates a loss of spatial correlation ov
each single frame. The time evolution of a line orient
alongy, shown in Fig. 3~c!, displays clearly how space-tim
defects invades now the whole system, leading to a fast t
decorrelation at any spatial location.

IV. CORRELATION FUNCTIONS

In order to characterize quantitatively the transition fro
regular patterns to space-time chaos, we evaluated the sp
and temporal correlation function for several values ofe.
The spatial correlation function is defined as

Cs~Dr !5K ^v~r ,t !v~r1Dr ,t !& r

^v~r ,t !2& r
L

t

, ~2!

where

v~r ,t !5u~r ,t !2^u~r ,t !& r ~3!

is the dc filtered pattern. No demodulation is performed
the pattern before computing the correlation functions, si
more than one spectral mode develops when increasin«.
The information on the characteristic length along and p
pendicular to the stripes will therefore be contained in
envelope of the spatial correlation function.

Sections ofCs(Dr ) alongx andy are shown in Fig. 4 for
four increasing values of«. The correlation decreases alon
both directions, and more rapidly for higher values of pum
than for lower ones. This is of course to be expected.

The other information conveyed by Fig. 4 is that the sp
tial correlation does not always decay symmetrically alonx
andy. This symmetry approximately exists close to the p
tern formation threshold, and, partially, in the fully deve
oped space-time chaos regime. In the first case, actually,
expected that, in the absence of experimental imperfecti
the correlation length be infinite along any direction. At i
termediate values of«, corresponding to the partially deve
oped chaos, the signal systematically decorrelates fa
alongy than alongx. This behavior is particularly visible a
long range (Dr *0.5 mm) in Figs. 4~b! and 4~c!. Here, the
correlation function alongx is higher than that alongy by
30–50%.

The qualitative origin of this asymmetry can be und
stood by inspection of Fig. 2~b!. Here we see that the var
cose undulations occurring on different stripes are mutu
01621
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dephased in an irregular way. Also, at these pump values
undulations are not extended uniformly over the system s
along x, but rather appear from time to time in some pr
ferred regions. In these areas, some extra segment of st
can appear. These structures are clearly visible in Fig. 2~b!,
and are responsible for the power contained in the sec
harmonic peaks in Fig. 2~e!. These features lead to a rath
strong symmetry breaking of the pattern alongy. Along x, on
the other side, the dominant aspect of the structure is a l
wavelength modulation, which affects the correlation loss
a lesser extent.

The symmetry of the correlation function is partially r
covered in the fully developed space-time chaotic regi
@Fig. 4~d!#, due to the fact that now the stripes appear brok
and their residuals are randomly bent with respect to thx
axis. However, at short scales (Dr &0.3 mm) the correlation
decreases faster alongx than alongy also in this case.

We then evaluated the global time correlation of the s
nal. This represents the time coherence of the whole pat
with respect to itself, and is defined as

Ct~Dt !5K ^v~r ,t !v~r ,t1Dt !& r

~^v~r ,t !2& r^v~r ,t1Dt !2& r !
1/2L

t

. ~4!

This quantity is plot for several values of« in Fig. 5. The
time scale over which the pattern loses correlation va
from tens of seconds, close to threshold, to a fraction o
second in the STC regime. Interestingly, at intermediate v
ues of« (3.1,4.0) the time correlation does not decay to ze
even at long times.

The reason for this can be understood with reference
Fig. 6, showing the time averaged patterns in the regu
partially developed and fully developed STC regimes. T
relevant fact here is that, in the partially developed cha
@Fig. 6~b!, «53.1], the average structure is still strong
regular. The presence of regularities in the average sig

FIG. 4. Spatial correlation functions alongx ~solid lines! andy
~dashed lines!. e50.6 ~a!, 3.1 ~b!, 5.0 ~c!, 6.1 ~d!.
0-3
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resulting from space-time chaotic data series has been
ready pointed out in fluid experiments@12,13#.

This symmetry in the averages means that the spatial fl
tuationsv(r ,t) have a very strong time correlated comp
nent, which manifests in the finite plateau of the correlat
functions shown in Fig. 5. The situation is different in th
well-developed STC regime; here the time averaged pat
is the one shown in Fig. 6~c!, i.e., gray with only some fluc-
tuations. These ones are probably due to imperfections in
LCLV homogeneity, and are responsible for the sm
though nonzero value of the time correlation att →` ob-
served also in this case.

V. THE KAHRUNEN-LOEVE DECOMPOSITION

In this section, we apply the Kahrunen-Loeve~KL ! tech-
nique for characterizing the space-time chaotic regime.
KL decomposition is a long used technique in signal analy
and processing@14#. While other techniques of decompos
tion deal with fixed basis functions@e.g., cos~! and sin~! for
the Fourier transform#, the KL technique is aimed to extrac
from a pattern series the empirical eigenpictures that bes
the statistical set features. Furthermore, it is possible to o
these eigenpictures with respect to their ‘‘energy,’’ meant
their contribution to the image series dynamics. Doing so
is often possible to identify a small set of modes which co
tains most of the relevant information.

This technique has been used in nonlinear dynamics w

FIG. 5. Time correlation function at several values of«. The
curves at« 5 0.6 and 3.1 are to be referred to the top time axis. T
curves at« 5 4.0 and 6.1 are to be referred to the lower time ax

FIG. 6. Time-averaged patterns fore50.6 ~a!, 3.1 ~b!, 6.1 ~c!.
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the aim of getting out relevant information from turbule
fields @15#. Its success encouraged to extend the method
other physical situations, among which is the study of spa
time chaos@16–23#.

The data used in this section are, for each value of«, a set
of T5120 frames, ofN55123512 pixels per frame. We
rearrange these data in a matrixA(zm ,tk) such as its columns
are thev(xi ,yj ,tk) @m[(N21) i̇ 1 j # patterns, ranked in a
time-increasing order. The matrixA is therefore of size
N3T.

Let us briefly recall how the Karhunen-Loe`ve technique
works. Given a time series of imagesv(r ,t), the aim is to
find two sets of orthonormal functionsfn(t), cn(r ) such
that

v~r ,t !5 (
n>1

mnfn~ t !cn~r !, ~5!

where the functions$cn(r )% describe the data informatio
content in the spatial domain, and are therefore someti
called the ‘‘topos.’’ Analogously, the$fn(t)% are named the
‘‘chronos.’’ The set of functionscn(t) are the solutions of
the eigenvalue problem having as a kernel the space cor
tion matrix:

K~zi ,zj !5AT
•A, ~6!

whereT represents the transposition operator. The$fn% are
further determined by projecting each data picture on
$cn% and averaging on space:

fn~ t !5
1

mn
^v~r ,t !•cn~r !& r . ~7!

The expansion coefficientsmn in Eq. ~5! are given by

umnu25ln , ~8!

$ln% being the eigenvalues associated to$fn ,cn%. Since the
$cn% and $fn% are normalized, this amounts to say that t
eigenvalue associated to each function represents its ‘‘en
contribution’’ to the data series.

Having obtained the KL spectrum, an approximated
construction of the pattern is obtained by truncating the
pansion~5! up to then0th mode~Galerkin projection!:

v~r ,t !.vn0
~r ,t !5 (

n51

n0

mnfn~ t !cn~r !, ~9!

wheren0<T.
Typical eigenvalues spectra~usually calledsingular spec-

tra! are reported in Fig. 7 for several values of the pum
parameter«. For small«, most of the energy is contained i
the first eigenpicture@Fig. 8~a!#. As « is increased, the spec
trum tail level grows, while the energy of the first mod
decreases: the spectrum becomes flatter and flatter, indic
a tendency towards equipartition of energy among all mo
in the developed STC regime.

Figure 8 shows examples of the spatial eigenmo
cn(r ), evaluated close to threshold and in the space-t

e
.
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TRANSITION TO SPACE-TIME CHAOS IN AN . . . PHYSICAL REVIEW E69, 016210 ~2004!
chaotic regime. In agreement with Fig. 7, one can see
the high order modes@n515 in Fig. 8~c!# have a relevant
amount of information in the case of STC signals, while th
represent just a small noise in the regular regime.

We report on Fig. 9~a! how the fraction of energyW1
contained in the first eigenmode varies vs«. W1 is defined as

W1[
l1

(
n51

T

ln

. ~10!

This quantity exhibits a smooth transition in the regi
2&«&6, passing from almost 100% to about 10%.

Complementary, Fig. 9~b! shows the numbern0 of modes
needed to contain 75% of the total energy of the time ser
as a function of«. Again, a large increase ofn0 can be
located at the smooth transition to STC.

FIG. 7. Singular spectra.e50.6 ~long dash!, 2.3~dot!, 3.1~short
dash!, 6.1 ~solid!.

FIG. 8. Some eigenpatterns of the POD:~a,d! first mode,~b,e!
second mode,~c,f! 15th mode. Upper raw:e50.6, lower raw:e
56.1.
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Let us introduce the cross-correlation indicatorC(n0) to
quantify the quality of the reconstruction between the inp
patternv and the patternvn0

reconstructed usingn0 eigen-
patterns:

C~n0!5K ^vn0
~r ,t !v~r ,t !& r

^uv~r ,t !u2& r
1/2^uvn0

~r ,t !u2& r
1/2L

t

. ~11!

This quantity is plotted as a function ofn0 in Fig. 10 for
three values of«. Even in the chaotic regime, a number
modes&20 appears sufficient to reconstruct a space-ti
series having a correlation larger than 90% with the origi
data set.

VI. CONCLUSION

We have presented a scenario of transition from regu
patterns to space-time chaotic dynamics, occurring in
presence of a translational transport introduced in an opt
system. The main aspects of the route to disorder are
presence of a varicose instability of the initial stripe patte
the appearance of localized bursts of activity as the first
ements destabilizing the ordered structures; the presenc

FIG. 9. ~a! EnergyW1 contained in the first eigenpattern.~b!
Numbern0 of modes required for recovering 75% of the total e
ergy WT .

FIG. 10. Cross-correlation indicatorC(n0) quantifying the level
of correlation between the pattern and its reconstruction using
first n0 eigenpatterns fore50.6 ~dotted line!, e53.1 ~deshed line!,
e56.1 ~solid line!.
0-5
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an asymmetry in the spatial correlation function at interm
diate values of the pump parameter, and the partial reco
of the symmetry in the fully developed space-time cha
regime.

An analysis of the signals based on the Kahrunen-Lo
decomposition shows that the transition to chaos is v
smooth, involving the successive activation of more a
n-
,
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more spatial modes over a wide range of the control par
eter.
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